This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"
#include"../../template/template.hpp"
#include"../../tree/heavy_light_decomposition.hpp"
#include"../../utility/modint.hpp"
#include"../../data_structure/segment_tree.hpp"
using mint = modint998244353;
using ar = array<mint,3>;
ar op(ar a, ar b){
return {a[0] * b[0], b[0] * a[1] + b[1], a[0] * b[2] + a[2]};
}
ar e(){
return {1, 0, 0};
}
ar flip(ar a){
std::swap(a[1],a[2]);
return a;
}
int main(){
int n, q; cin >> n >> q;
std::vector<std::pair<int, int>> ab(n);
for (int i = 0; i < n; i++){
cin >> ab[i].first >> ab[i].second;
}
hld_tree g(n);
g.input_edges<0>();
segtree<ar,op,e> seg([&]{
std::vector<ar> a(n);
for (int u = 0; u < n; u++){
a[g.index(u)] = {ab[u].first, ab[u].second, ab[u].second};
}
return a;
}());
while (q--){
int t; cin >> t;
if (t == 0){
int p, c, d; cin >> p >> c >> d;
seg.set(g.index(p), {c, d, d});
}
if (t == 1){
int u, v, x; cin >> u >> v >> x;
ar sml = e(), smr = e();
g.path_query(u, v, [&](int l, int r){
if (l < r){
smr = op(seg.prod(l, r), smr);
}
else {
sml = op(sml, flip(seg.prod(r, l)));
}
});
auto [a, b, revb] = op(sml, smr);
mint ans = a * x + b;
cout << ans.val() << '\n';
}
}
}
#line 1 "test/tree/VertexSetPathComposite.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_set_path_composite"
#line 2 "template/template.hpp"
using namespace std;
#include<bits/stdc++.h>
#line 1 "template/inout_old.hpp"
namespace noya2 {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p){
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p){
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v){
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v){
for (auto &x : v) is >> x;
return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u){
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u){
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
template<typename T>
void out(const vector<vector<T>> &vv){
int s = (int)vv.size();
for (int i = 0; i < s; i++) out(vv[i]);
}
struct IoSetup {
IoSetup(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetup_noya2;
} // namespace noya2
#line 1 "template/const.hpp"
namespace noya2{
const int iinf = 1'000'000'007;
const long long linf = 2'000'000'000'000'000'000LL;
const long long mod998 = 998244353;
const long long mod107 = 1000000007;
const long double pi = 3.14159265358979323;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";
void yes(){ cout << "Yes\n"; }
void no(){ cout << "No\n"; }
void YES(){ cout << "YES\n"; }
void NO(){ cout << "NO\n"; }
void yn(bool t){ t ? yes() : no(); }
void YN(bool t){ t ? YES() : NO(); }
} // namespace noya2
#line 2 "template/utils.hpp"
#line 6 "template/utils.hpp"
namespace noya2{
unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){
if (a == 0 || b == 0) return a + b;
int n = __builtin_ctzll(a); a >>= n;
int m = __builtin_ctzll(b); b >>= m;
while (a != b) {
int mm = __builtin_ctzll(a - b);
bool f = a > b;
unsigned long long c = f ? a : b;
b = f ? b : a;
a = (c - b) >> mm;
}
return a << std::min(n, m);
}
template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }
long long sqrt_fast(long long n) {
if (n <= 0) return 0;
long long x = sqrt(n);
while ((x + 1) * (x + 1) <= n) x++;
while (x * x > n) x--;
return x;
}
template<typename T> T floor_div(const T n, const T d) {
assert(d != 0);
return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);
}
template<typename T> T ceil_div(const T n, const T d) {
assert(d != 0);
return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);
}
template<typename T> void uniq(std::vector<T> &v){
std::sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
}
template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }
template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }
template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }
} // namespace noya2
#line 8 "template/template.hpp"
#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)
#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)
#define all(v) (v).begin(),(v).end()
using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;
namespace noya2{
/* ~ (. _________ . /) */
}
using namespace noya2;
#line 2 "tree/heavy_light_decomposition.hpp"
#line 6 "tree/heavy_light_decomposition.hpp"
#include <ranges>
#line 9 "tree/heavy_light_decomposition.hpp"
// #include "data_structure/csr.hpp"
namespace noya2 {
struct hld_tree {
int n, root;
std::vector<int> down, nxt, sub, tour;
// noya2::internal::csr<int> childs;
// default constructor (nop)
hld_tree () {}
// tree with _n node
// after construct, call input_edges / input_parents / add_edge _n - 1 times
hld_tree (int _n, int _root = 0) : n(_n), root(_root), down(n), nxt(n), sub(n, 1), tour(n) {
if (n == 1){
nxt[0] = -1;
down[0] = -1;
build_from_parents();
}
}
// par[i] < i, par[0] == -1
hld_tree (const std::vector<int> &par) : n(par.size()), root(0), down(n, -1), nxt(par), sub(n, 1), tour(n){
build_from_parents();
}
// par[i] < i, par[0] == -1
hld_tree (std::vector<int> &&par) : n(par.size()), root(0), down(n, -1), sub(n, 1), tour(n) {
nxt.swap(par);
build_from_parents();
}
// distinct unweighted undirected n - 1 edges of tree
hld_tree (const std::vector<std::pair<int, int>> &es, int _root = 0) : n(es.size() + 1), root(_root), down(n), nxt(n), sub(n, 1), tour(n) {
for (auto &[u, v] : es){
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
}
build_from_edges();
}
// input parents from cin
template<int indexed = 1>
void input_parents(){
// using std::cin;
nxt[0] = -1;
for (int u = 1; u < n; u++){
cin >> nxt[u];
nxt[u] -= indexed;
}
build_from_parents();
}
// input n - 1 edges from cin
template<int indexed = 1>
void input_edges(){
// using std::cin;
for (int i = 1; i < n; i++){
int u, v; cin >> u >> v;
u -= indexed;
v -= indexed;
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
}
build_from_edges();
}
void add_edge(int u, int v){
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
// use tour[0] as counter
if (++tour[0] == n - 1){
build_from_edges();
}
}
size_t size() const {
return n;
}
// top vertex of heavy path which contains v
int leader(int v) const {
return nxt[v] < 0 ? v : nxt[v];
}
// level ancestor
// ret is ancestor of v, dist(ret, v) == d
// if d > depth(v), return -1
int la(int v, int d) const {
while (v != -1){
int u = leader(v);
if (down[v] - d >= down[u]){
v = tour[down[v] - d];
break;
}
d -= down[v] - down[u] + 1;
v = (u == root ? -1 : ~nxt[u]);
}
return v;
}
// lowest common ancestor of u and v
int lca(int u, int v) const {
int du = down[u], dv = down[v];
if (du > dv){
std::swap(du, dv);
std::swap(u, v);
}
if (dv < du + sub[u]){
return u;
}
while (du < dv){
v = ~nxt[leader(v)];
dv = down[v];
}
return v;
}
// distance from u to v
int dist(int u, int v) const {
int _dist = 0;
while (leader(u) != leader(v)){
if (down[u] > down[v]) std::swap(u, v);
_dist += down[v] - down[leader(v)] + 1;
v = ~nxt[leader(v)];
}
_dist += std::abs(down[u] - down[v]);
return _dist;
}
// d times move from to its neighbor (direction of to)
// if d > dist(from, to), return -1
int jump(int from, int to, int d) const {
int _from = from, _to = to;
int dist_from_lca = 0, dist_to_lca = 0;
while (leader(_from) != leader(_to)){
if (down[_from] > down[_to]){
dist_from_lca += down[_from] - down[leader(_from)] + 1;
_from = ~nxt[leader(_from)];
}
else {
dist_to_lca += down[_to] - down[leader(_to)] + 1;
_to = ~nxt[leader(_to)];
}
}
if (down[_from] > down[_to]){
dist_from_lca += down[_from] - down[_to];
}
else {
dist_to_lca += down[_to] - down[_from];
}
if (d <= dist_from_lca){
return la(from, d);
}
d -= dist_from_lca;
if (d <= dist_to_lca){
return la(to, dist_to_lca - d);
}
return -1;
}
// parent of v (if v is root, return -1)
int parent(int v) const {
if (v == root) return -1;
return (nxt[v] < 0 ? ~nxt[v] : tour[down[v] - 1]);
}
// visiting time in euler tour
// usage : seg.set(index(v), X[v])
int index(int vertex) const {
return down[vertex];
}
// usage : seg.set(index_edge(e.u, e.v), e.val)
int index(int vertex1, int vertex2) const {
return std::max(down[vertex1], down[vertex2]);
}
// subtree size of v
int subtree_size(int v) const {
return sub[v];
}
// prod in subtree v : seg.prod(subtree_l(v), subtree_r(v))
int subtree_l(int v) const {
return down[v];
}
int subtree_r(int v) const {
return down[v] + sub[v];
}
// v is in subtree r
bool is_in_subtree(int r, int v) const {
return subtree_l(r) <= subtree_l(v) && subtree_r(v) <= subtree_r(r);
}
// distance table from s
std::vector<int> dist_table(int s) const {
std::vector<int> table(n, -1);
table[s] = 0;
while (s != root){
table[parent(s)] = table[s] + 1;
s = parent(s);
}
for (int v : tour){
if (table[v] == -1){
table[v] = table[parent(v)] + 1;
}
}
return table;
}
// dist, v1, v2
std::tuple<int, int, int> diameter() const {
std::vector<int> dep = dist_table(root);
int v1 = std::ranges::max_element(dep) - dep.begin();
std::vector<int> fromv1 = dist_table(v1);
int v2 = std::ranges::max_element(fromv1) - fromv1.begin();
return {fromv1[v2], v1, v2};
}
// vertex array {from, ..., to}
std::vector<int> path(int from, int to) const {
int d = dist(from, to);
std::vector<int> _path(d + 1);
int front = 0, back = d;
while (from != to){
if (down[from] > down[to]){
_path[front++] = from;
from = parent(from);
}
else {
_path[back--] = to;
to = parent(to);
}
}
_path[front] = from;
return _path;
}
// path decomposition and query (vertex weighted)
// if l < r, decsending order tour[l, r)
// if l > r, acsending order tour(l, r]
template<bool vertex = true>
void path_query(int u, int v, auto f) const {
while (leader(u) != leader(v)){
if (down[u] < down[v]){
f(down[leader(v)], down[v] + 1);
v = ~nxt[leader(v)];
}
else {
f(down[u] + 1, down[leader(u)]);
u = ~nxt[leader(u)];
}
}
if constexpr (vertex){
if (down[u] < down[v]){
f(down[u], down[v] + 1);
}
else {
f(down[u] + 1, down[v]);
}
}
else {
if (down[u] != down[v]){
f(down[u] + 1, down[v] + 1);
}
}
}
// {parent, mapping} : cptree i is correspond to tree mapping[i]. parent[i] is parent of i in cptree.
// parent[i] < i, parent[0] == -1
std::pair<std::vector<int>, std::vector<int>> compressed_tree(std::vector<int> vs) const {
if (vs.empty()){
return {{},{}};
}
auto comp = [&](int l, int r){
return down[l] < down[r];
};
std::ranges::sort(vs, comp);
int sz = vs.size(); vs.reserve(2*sz);
for (int i = 0; i < sz-1; i++){
vs.emplace_back(lca(vs[i], vs[i+1]));
}
std::sort(vs.begin() + sz, vs.end(), comp);
std::ranges::inplace_merge(vs, vs.begin() + sz, comp);
auto del = std::ranges::unique(vs);
vs.erase(del.begin(), del.end());
sz = vs.size();
std::stack<int> st;
std::vector<int> par(sz);
par[0] = -1;
st.push(0);
for (int i = 1; i < sz; i++){
while (!is_in_subtree(vs[st.top()], vs[i])) st.pop();
par[i] = st.top();
st.push(i);
}
return {par, vs};
}
/* CSR
// build csr for using operator()
void build_csr(){
childs = noya2::internal::csr<int>(n, n - 1);
for (int v = 0; v < n; v++){
if (v == root) continue;
childs.add(parent(v), v);
}
childs.build();
}
const auto operator()(int v) const {
return childs[v];
}
auto operator()(int v){
return childs[v];
}
*/
// hld_tree g;
// euler tour order : `for (int v : g)`
// with range_adaptor : `for (int v : g | std::views::reverse)`
// bottom-up DP : `for (int v : g | std::views::drop(1) | std::views::reverse){ update dp[g.parent(v)] by dp[v] }`
auto begin() const {
return tour.begin();
}
auto end() const {
return tour.end();
}
private:
// nxt[v] : parent of v, nxt[0] == -1
void build_from_parents(){
for (int u = n - 1; u >= 1; u--){
int v = nxt[u];
sub[v] += sub[u];
down[v] = std::max(down[v], sub[u]);
}
for (int u = n - 1; u >= 1; u--){
int v = nxt[u];
if (down[v] == sub[u]){
sub[u] = ~sub[u];
down[v] = ~down[v];
}
}
sub[0] = ~down[0] + 1;
down[0] = 0;
for (int u = 1; u < n; u++){
int v = nxt[u];
int nsub = ~down[u] + 1;
if (sub[u] < 0){
down[u] = down[v] + 1;
nxt[u] = (nxt[v] < 0 ? v : nxt[v]);
}
else {
down[u] = down[v] + sub[v];
sub[v] += sub[u];
nxt[u] = ~v;
}
sub[u] = nsub;
}
for (int u = 0; u < n; u++){
tour[down[u]] = u;
}
}
// down[v] : degree of v
// nxt[v] : xor prod of neighbor of v
void build_from_edges(){
// use tour as queue
int back = 0;
for (int u = 0; u < n; u++){
if (u != root && down[u] == 1){
tour[back++] = u;
}
}
for (int front = 0; front < n - 1; front++){
int u = tour[front];
down[u] = -1;
int v = nxt[u]; // parent of v
nxt[v] ^= u;
if (--down[v] == 1 && v != root){
tour[back++] = v;
}
}
// check : now, tour is reverse of topological order
tour.pop_back();
// check : now, down[*] <= 1
for (int u : tour){
int v = nxt[u];
// subtree size (initialized (1,1,...,1))
sub[v] += sub[u];
// heaviest subtree of its child
down[v] = std::max(down[v], sub[u]);
}
for (int u : tour){
int v = nxt[u];
// whether u is not the top of heavy path
if (down[v] == sub[u]){
sub[u] = ~sub[u];
down[v] = ~down[v];
}
}
// after appearing v as u (or v == root),
// down[v] is the visiting time of euler tour
// nxt[v] is the lowest vertex of heavy path which contains v
// (if v itself, nxt[v] is ~(parent of v))
// sub[v] + down[v] is the light child's starting time of euler tour
// note : heavy child's visiting time of euler tour is (the time of its parent) + 1
sub[root] = ~down[root] + 1;
down[root] = 0;
nxt[root] = -1;
for (int u : tour | std::views::reverse){
int v = nxt[u];
int nsub = ~down[u] + 1;
// heavy child
if (sub[u] < 0){
down[u] = down[v] + 1;
nxt[u] = (nxt[v] < 0 ? v : nxt[v]);
}
// light child
else {
down[u] = down[v] + sub[v];
sub[v] += sub[u];
nxt[u] = ~v;
}
sub[u] = nsub;
}
// tour is inverse permutation of down
tour.push_back(0);
for (int u = 0; u < n; u++){
tour[down[u]] = u;
}
}
};
} // namespace noya2
#line 2 "utility/modint.hpp"
#line 4 "utility/modint.hpp"
#line 2 "math/prime.hpp"
#line 4 "math/prime.hpp"
namespace noya2 {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u;
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m);
} // namespace noya2
#line 6 "utility/modint.hpp"
namespace noya2{
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
unsigned long long x = (unsigned long long)((__uint128_t(z) * im) >> 64);
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
template <int m>
struct static_modint {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
constexpr static_modint() : _v(0) {}
template<std::signed_integral T>
constexpr static_modint(T v){
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template<std::unsigned_integral T>
constexpr static_modint(T v){
_v = (unsigned int)(v % umod());
}
constexpr unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
constexpr mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
constexpr mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
constexpr mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (uint)(z % umod());
return *this;
}
constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
constexpr mint operator+() const { return *this; }
constexpr mint operator-() const { return mint() - *this; }
constexpr mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
constexpr mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend constexpr mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend constexpr mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend constexpr mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend constexpr mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend constexpr bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend constexpr bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
friend std::ostream &operator<<(std::ostream &os, const mint& p) {
return os << p.val();
}
friend std::istream &operator>>(std::istream &is, mint &a) {
long long t; is >> t;
a = mint(t);
return (is);
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = is_prime_flag<m>;
};
template <int id> struct dynamic_modint {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template<std::signed_integral T>
dynamic_modint(T v){
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template<std::unsigned_integral T>
dynamic_modint(T v){
_v = (unsigned int)(v % umod());
}
uint val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = noya2::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
friend std::ostream &operator<<(std::ostream &os, const mint& p) {
return os << p.val();
}
friend std::istream &operator>>(std::istream &is, mint &a) {
long long t; is >> t;
a = mint(t);
return (is);
}
private:
unsigned int _v;
static barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> noya2::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
template<typename T>
concept Modint = requires (T &a){
T::mod();
a.inv();
a.val();
a.pow(declval<int>());
};
} // namespace noya2
#line 2 "data_structure/segment_tree.hpp"
namespace noya2{
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
segtree(int n) : segtree(std::vector<S>(n, e())) {}
segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = 0;
size = 1;
while (size < _n) size <<= 1, log++;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
template <bool (*f)(S)> int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
} // namespace noya2
#line 7 "test/tree/VertexSetPathComposite.test.cpp"
using mint = modint998244353;
using ar = array<mint,3>;
ar op(ar a, ar b){
return {a[0] * b[0], b[0] * a[1] + b[1], a[0] * b[2] + a[2]};
}
ar e(){
return {1, 0, 0};
}
ar flip(ar a){
std::swap(a[1],a[2]);
return a;
}
int main(){
int n, q; cin >> n >> q;
std::vector<std::pair<int, int>> ab(n);
for (int i = 0; i < n; i++){
cin >> ab[i].first >> ab[i].second;
}
hld_tree g(n);
g.input_edges<0>();
segtree<ar,op,e> seg([&]{
std::vector<ar> a(n);
for (int u = 0; u < n; u++){
a[g.index(u)] = {ab[u].first, ab[u].second, ab[u].second};
}
return a;
}());
while (q--){
int t; cin >> t;
if (t == 0){
int p, c, d; cin >> p >> c >> d;
seg.set(g.index(p), {c, d, d});
}
if (t == 1){
int u, v, x; cin >> u >> v >> x;
ar sml = e(), smr = e();
g.path_query(u, v, [&](int l, int r){
if (l < r){
smr = op(seg.prod(l, r), smr);
}
else {
sml = op(sml, flip(seg.prod(r, l)));
}
});
auto [a, b, revb] = op(sml, smr);
mint ans = a * x + b;
cout << ans.val() << '\n';
}
}
}