This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/primitive_root"
#include"../../template/template.hpp"
#include"../../math/prime_64bit.hpp"
void solve(){
ll p; in(p);
out(internal64bit::primitive_root_ll(p));
}
int main(){
int q; in(q);
while (q--){
solve();
}
}
#line 1 "test/math/PrimitiveRoot.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/primitive_root"
#line 2 "template/template.hpp"
using namespace std;
#include<bits/stdc++.h>
#line 1 "template/inout_old.hpp"
namespace noya2 {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p){
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p){
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v){
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v){
for (auto &x : v) is >> x;
return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u){
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u){
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
template<typename T>
void out(const vector<vector<T>> &vv){
int s = (int)vv.size();
for (int i = 0; i < s; i++) out(vv[i]);
}
struct IoSetup {
IoSetup(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetup_noya2;
} // namespace noya2
#line 1 "template/const.hpp"
namespace noya2{
const int iinf = 1'000'000'007;
const long long linf = 2'000'000'000'000'000'000LL;
const long long mod998 = 998244353;
const long long mod107 = 1000000007;
const long double pi = 3.14159265358979323;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";
void yes(){ cout << "Yes\n"; }
void no(){ cout << "No\n"; }
void YES(){ cout << "YES\n"; }
void NO(){ cout << "NO\n"; }
void yn(bool t){ t ? yes() : no(); }
void YN(bool t){ t ? YES() : NO(); }
} // namespace noya2
#line 2 "template/utils.hpp"
#line 6 "template/utils.hpp"
namespace noya2{
unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){
if (a == 0 || b == 0) return a + b;
int n = __builtin_ctzll(a); a >>= n;
int m = __builtin_ctzll(b); b >>= m;
while (a != b) {
int mm = __builtin_ctzll(a - b);
bool f = a > b;
unsigned long long c = f ? a : b;
b = f ? b : a;
a = (c - b) >> mm;
}
return a << std::min(n, m);
}
template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }
long long sqrt_fast(long long n) {
if (n <= 0) return 0;
long long x = sqrt(n);
while ((x + 1) * (x + 1) <= n) x++;
while (x * x > n) x--;
return x;
}
template<typename T> T floor_div(const T n, const T d) {
assert(d != 0);
return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);
}
template<typename T> T ceil_div(const T n, const T d) {
assert(d != 0);
return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);
}
template<typename T> void uniq(std::vector<T> &v){
std::sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
}
template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }
template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }
template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }
} // namespace noya2
#line 8 "template/template.hpp"
#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)
#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)
#define all(v) (v).begin(),(v).end()
using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;
namespace noya2{
/* ~ (. _________ . /) */
}
using namespace noya2;
#line 2 "math/prime_64bit.hpp"
#include <type_traits>
#line 2 "math/factorize.hpp"
#line 6 "math/factorize.hpp"
#include <initializer_list>
#line 10 "math/factorize.hpp"
namespace fast_factorize {
/*
See : https://judge.yosupo.jp/submission/189742
*/
// ---- gcd ----
uint64_t gcd_stein_impl( uint64_t x, uint64_t y ) {
if( x == y ) { return x; }
const uint64_t a = y - x;
const uint64_t b = x - y;
const int n = __builtin_ctzll( b );
const uint64_t s = x < y ? a : b;
const uint64_t t = x < y ? x : y;
return gcd_stein_impl( s >> n, t );
}
uint64_t gcd_stein( uint64_t x, uint64_t y ) {
if( x == 0 ) { return y; }
if( y == 0 ) { return x; }
const int n = __builtin_ctzll( x );
const int m = __builtin_ctzll( y );
return gcd_stein_impl( x >> n, y >> m ) << ( n < m ? n : m );
}
// ---- is_prime ----
uint64_t mod_pow( uint64_t x, uint64_t y, uint64_t mod ) {
uint64_t ret = 1;
uint64_t acc = x;
for( ; y; y >>= 1 ) {
if( y & 1 ) {
ret = __uint128_t(ret) * acc % mod;
}
acc = __uint128_t(acc) * acc % mod;
}
return ret;
}
bool miller_rabin( uint64_t n, const std::initializer_list<uint64_t>& as ) {
return std::all_of( as.begin(), as.end(), [n]( uint64_t a ) {
if( n <= a ) { return true; }
int e = __builtin_ctzll( n - 1 );
uint64_t z = mod_pow( a, ( n - 1 ) >> e, n );
if( z == 1 || z == n - 1 ) { return true; }
while( --e ) {
z = __uint128_t(z) * z % n;
if( z == 1 ) { return false; }
if( z == n - 1 ) { return true; }
}
return false;
});
}
bool is_prime( uint64_t n ) {
if( n == 2 ) { return true; }
if( n % 2 == 0 ) { return false; }
if( n < 4759123141 ) { return miller_rabin( n, { 2, 7, 61 } ); }
return miller_rabin( n, { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 } );
}
// ---- Montgomery ----
class Montgomery {
uint64_t mod;
uint64_t R;
public:
Montgomery( uint64_t n ) : mod(n), R(n) {
for( size_t i = 0; i < 5; ++i ) {
R *= 2 - mod * R;
}
}
uint64_t fma( uint64_t a, uint64_t b, uint64_t c ) const {
const __uint128_t d = __uint128_t(a) * b;
const uint64_t e = c + mod + ( d >> 64 );
const uint64_t f = uint64_t(d) * R;
const uint64_t g = ( __uint128_t(f) * mod ) >> 64;
return e - g;
}
uint64_t mul( uint64_t a, uint64_t b ) const {
return fma( a, b, 0 );
}
};
// ---- Pollard's rho algorithm ----
uint64_t pollard_rho( uint64_t n ) {
if( n % 2 == 0 ) { return 2; }
const Montgomery m( n );
constexpr uint64_t C1 = 1;
constexpr uint64_t C2 = 2;
constexpr uint64_t M = 512;
uint64_t Z1 = 1;
uint64_t Z2 = 2;
retry:
uint64_t z1 = Z1;
uint64_t z2 = Z2;
for( size_t k = M; ; k *= 2 ) {
const uint64_t x1 = z1 + n;
const uint64_t x2 = z2 + n;
for( size_t j = 0; j < k; j += M ) {
const uint64_t y1 = z1;
const uint64_t y2 = z2;
uint64_t q1 = 1;
uint64_t q2 = 2;
z1 = m.fma( z1, z1, C1 );
z2 = m.fma( z2, z2, C2 );
for( size_t i = 0; i < M; ++i ) {
const uint64_t t1 = x1 - z1;
const uint64_t t2 = x2 - z2;
z1 = m.fma( z1, z1, C1 );
z2 = m.fma( z2, z2, C2 );
q1 = m.mul( q1, t1 );
q2 = m.mul( q2, t2 );
}
q1 = m.mul( q1, x1 - z1 );
q2 = m.mul( q2, x2 - z2 );
const uint64_t q3 = m.mul( q1, q2 );
const uint64_t g3 = gcd_stein( n, q3 );
if( g3 == 1 ) { continue; }
if( g3 != n ) { return g3; }
const uint64_t g1 = gcd_stein( n, q1 );
const uint64_t g2 = gcd_stein( n, q2 );
const uint64_t C = g1 != 1 ? C1 : C2;
const uint64_t x = g1 != 1 ? x1 : x2;
uint64_t z = g1 != 1 ? y1 : y2;
uint64_t g = g1 != 1 ? g1 : g2;
if( g == n ) {
do {
z = m.fma( z, z, C );
g = gcd_stein( n, x - z );
} while( g == 1 );
}
if( g != n ) {
return g;
}
Z1 += 2;
Z2 += 2;
goto retry;
}
}
}
void factorize_impl( uint64_t n, std::vector<uint64_t>& ret ) {
if( n <= 1 ) { return; }
if( is_prime( n ) ) { ret.push_back( n ); return; }
const uint64_t p = pollard_rho( n );
factorize_impl( p, ret );
factorize_impl( n / p, ret );
}
std::vector<uint64_t> factorize( uint64_t n ) {
std::vector<uint64_t> ret;
factorize_impl( n, ret );
std::sort( ret.begin(), ret.end() );
return ret;
}
} // namespace fast_factorize
namespace noya2 {
std::vector<std::pair<long long, int>> factorize(long long n){
std::vector<std::pair<long long, int>> ans;
auto ps = fast_factorize::factorize(n);
int sz = ps.size();
for (int l = 0, r = 0; l < sz; l = r){
while (r < sz && ps[l] == ps[r]) r++;
ans.emplace_back(ps[l], r-l);
}
return ans;
}
std::vector<long long> divisors(long long n){
auto ps = fast_factorize::factorize(n);
int sz = ps.size();
std::vector<long long> ans = {1};
for (int l = 0, r = 0; l < sz; l = r){
while (r < sz && ps[l] == ps[r]) r++;
int e = r - l;
int len = ans.size();
ans.reserve(len*(e+1));
long long mul = ps[l];
while (true){
for (int i = 0; i < len; i++){
ans.emplace_back(ans[i]*mul);
}
if (--e == 0) break;
mul *= ps[l];
}
}
return ans;
}
std::vector<long long> divisors(const std::vector<std::pair<long long, int>> &pes){
std::vector<long long> ans = {1};
for (auto [p, e] : pes){
int len = ans.size();
ans.reserve(len*(e+1));
long long mul = p;
while (true){
for (int i = 0; i < len; i++){
ans.emplace_back(ans[i]*mul);
}
if (--e == 0) break;
mul *= p;
}
}
return ans;
}
} // namespace noya2
#line 7 "math/prime_64bit.hpp"
namespace noya2::internal64bit {
template<typename T>
constexpr T safe_mod(T a, T p){
a %= p;
if constexpr (std::is_signed_v<T> || std::is_same_v<T, __int128_t>){
if (a < 0) a += p;
}
return a;
}
template<typename T, typename U>
constexpr T pow_mod_constexpr(T x, U n, T p){
if (p == 1) return 0;
x = safe_mod(x, p);
T ret = 1;
while (n != 0){
if (n % 2 == 1){
ret = U(ret) * x % p;
}
x = U(x) * x % p;
n /= 2;
}
return ret;
}
// return {g, y}
// g = gcd(x, p), y * x == 1 (mod p/g)
template<typename T>
constexpr std::pair<T, T> inv_gcd(T x, T p){
x = safe_mod(x, p);
if (x == 0) return {p, 0};
T s = p, t = x;
T m0 = 0, m1 = 1;
while (t != 0){
T q = s / t;
s -= t * q;
m0 -= m1 * q;
std::swap(s, t);
std::swap(m0, m1);
}
if (m0 < 0) m0 += p / s;
return {s, m0};
}
// p must be prime
long long primitive_root_ll(long long p){
if (p == 2) return 1;
auto fs = fast_factorize::factorize(p - 1);
fs.erase(std::unique(fs.begin(), fs.end()), fs.end());
for (long long g = 2; ; g++){
bool ok = true;
for (auto &f : fs){
if (pow_mod_constexpr<long long, __int128_t>(g, (p - 1) / f, p) == 1){
ok = false;
break;
}
}
if (ok) return g;
}
exit(1);
}
} // namespace noya2
#line 5 "test/math/PrimitiveRoot.test.cpp"
void solve(){
ll p; in(p);
out(internal64bit::primitive_root_ll(p));
}
int main(){
int q; in(q);
while (q--){
solve();
}
}