This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/prime_64bit.hpp"
#pragma once
#include <type_traits>
#include <utility>
#include <algorithm>
#include "factorize.hpp"
namespace noya2::internal64bit {
template<typename T>
constexpr T safe_mod(T a, T p){
a %= p;
if constexpr (std::is_signed_v<T> || std::is_same_v<T, __int128_t>){
if (a < 0) a += p;
}
return a;
}
template<typename T, typename U>
constexpr T pow_mod_constexpr(T x, U n, T p){
if (p == 1) return 0;
x = safe_mod(x, p);
T ret = 1;
while (n != 0){
if (n % 2 == 1){
ret = U(ret) * x % p;
}
x = U(x) * x % p;
n /= 2;
}
return ret;
}
// return {g, y}
// g = gcd(x, p), y * x == 1 (mod p/g)
template<typename T>
constexpr std::pair<T, T> inv_gcd(T x, T p){
x = safe_mod(x, p);
if (x == 0) return {p, 0};
T s = p, t = x;
T m0 = 0, m1 = 1;
while (t != 0){
T q = s / t;
s -= t * q;
m0 -= m1 * q;
std::swap(s, t);
std::swap(m0, m1);
}
if (m0 < 0) m0 += p / s;
return {s, m0};
}
// p must be prime
long long primitive_root_ll(long long p){
if (p == 2) return 1;
auto fs = fast_factorize::factorize(p - 1);
fs.erase(std::unique(fs.begin(), fs.end()), fs.end());
for (long long g = 2; ; g++){
bool ok = true;
for (auto &f : fs){
if (pow_mod_constexpr<long long, __int128_t>(g, (p - 1) / f, p) == 1){
ok = false;
break;
}
}
if (ok) return g;
}
exit(1);
}
} // namespace noya2
#line 2 "math/prime_64bit.hpp"
#include <type_traits>
#include <utility>
#include <algorithm>
#line 2 "math/factorize.hpp"
#include <stddef.h>
#include <stdint.h>
#line 6 "math/factorize.hpp"
#include <initializer_list>
#include <iostream>
#include <vector>
#line 10 "math/factorize.hpp"
namespace fast_factorize {
/*
See : https://judge.yosupo.jp/submission/189742
*/
// ---- gcd ----
uint64_t gcd_stein_impl( uint64_t x, uint64_t y ) {
if( x == y ) { return x; }
const uint64_t a = y - x;
const uint64_t b = x - y;
const int n = __builtin_ctzll( b );
const uint64_t s = x < y ? a : b;
const uint64_t t = x < y ? x : y;
return gcd_stein_impl( s >> n, t );
}
uint64_t gcd_stein( uint64_t x, uint64_t y ) {
if( x == 0 ) { return y; }
if( y == 0 ) { return x; }
const int n = __builtin_ctzll( x );
const int m = __builtin_ctzll( y );
return gcd_stein_impl( x >> n, y >> m ) << ( n < m ? n : m );
}
// ---- is_prime ----
uint64_t mod_pow( uint64_t x, uint64_t y, uint64_t mod ) {
uint64_t ret = 1;
uint64_t acc = x;
for( ; y; y >>= 1 ) {
if( y & 1 ) {
ret = __uint128_t(ret) * acc % mod;
}
acc = __uint128_t(acc) * acc % mod;
}
return ret;
}
bool miller_rabin( uint64_t n, const std::initializer_list<uint64_t>& as ) {
return std::all_of( as.begin(), as.end(), [n]( uint64_t a ) {
if( n <= a ) { return true; }
int e = __builtin_ctzll( n - 1 );
uint64_t z = mod_pow( a, ( n - 1 ) >> e, n );
if( z == 1 || z == n - 1 ) { return true; }
while( --e ) {
z = __uint128_t(z) * z % n;
if( z == 1 ) { return false; }
if( z == n - 1 ) { return true; }
}
return false;
});
}
bool is_prime( uint64_t n ) {
if( n == 2 ) { return true; }
if( n % 2 == 0 ) { return false; }
if( n < 4759123141 ) { return miller_rabin( n, { 2, 7, 61 } ); }
return miller_rabin( n, { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 } );
}
// ---- Montgomery ----
class Montgomery {
uint64_t mod;
uint64_t R;
public:
Montgomery( uint64_t n ) : mod(n), R(n) {
for( size_t i = 0; i < 5; ++i ) {
R *= 2 - mod * R;
}
}
uint64_t fma( uint64_t a, uint64_t b, uint64_t c ) const {
const __uint128_t d = __uint128_t(a) * b;
const uint64_t e = c + mod + ( d >> 64 );
const uint64_t f = uint64_t(d) * R;
const uint64_t g = ( __uint128_t(f) * mod ) >> 64;
return e - g;
}
uint64_t mul( uint64_t a, uint64_t b ) const {
return fma( a, b, 0 );
}
};
// ---- Pollard's rho algorithm ----
uint64_t pollard_rho( uint64_t n ) {
if( n % 2 == 0 ) { return 2; }
const Montgomery m( n );
constexpr uint64_t C1 = 1;
constexpr uint64_t C2 = 2;
constexpr uint64_t M = 512;
uint64_t Z1 = 1;
uint64_t Z2 = 2;
retry:
uint64_t z1 = Z1;
uint64_t z2 = Z2;
for( size_t k = M; ; k *= 2 ) {
const uint64_t x1 = z1 + n;
const uint64_t x2 = z2 + n;
for( size_t j = 0; j < k; j += M ) {
const uint64_t y1 = z1;
const uint64_t y2 = z2;
uint64_t q1 = 1;
uint64_t q2 = 2;
z1 = m.fma( z1, z1, C1 );
z2 = m.fma( z2, z2, C2 );
for( size_t i = 0; i < M; ++i ) {
const uint64_t t1 = x1 - z1;
const uint64_t t2 = x2 - z2;
z1 = m.fma( z1, z1, C1 );
z2 = m.fma( z2, z2, C2 );
q1 = m.mul( q1, t1 );
q2 = m.mul( q2, t2 );
}
q1 = m.mul( q1, x1 - z1 );
q2 = m.mul( q2, x2 - z2 );
const uint64_t q3 = m.mul( q1, q2 );
const uint64_t g3 = gcd_stein( n, q3 );
if( g3 == 1 ) { continue; }
if( g3 != n ) { return g3; }
const uint64_t g1 = gcd_stein( n, q1 );
const uint64_t g2 = gcd_stein( n, q2 );
const uint64_t C = g1 != 1 ? C1 : C2;
const uint64_t x = g1 != 1 ? x1 : x2;
uint64_t z = g1 != 1 ? y1 : y2;
uint64_t g = g1 != 1 ? g1 : g2;
if( g == n ) {
do {
z = m.fma( z, z, C );
g = gcd_stein( n, x - z );
} while( g == 1 );
}
if( g != n ) {
return g;
}
Z1 += 2;
Z2 += 2;
goto retry;
}
}
}
void factorize_impl( uint64_t n, std::vector<uint64_t>& ret ) {
if( n <= 1 ) { return; }
if( is_prime( n ) ) { ret.push_back( n ); return; }
const uint64_t p = pollard_rho( n );
factorize_impl( p, ret );
factorize_impl( n / p, ret );
}
std::vector<uint64_t> factorize( uint64_t n ) {
std::vector<uint64_t> ret;
factorize_impl( n, ret );
std::sort( ret.begin(), ret.end() );
return ret;
}
} // namespace fast_factorize
namespace noya2 {
std::vector<std::pair<long long, int>> factorize(long long n){
std::vector<std::pair<long long, int>> ans;
auto ps = fast_factorize::factorize(n);
int sz = ps.size();
for (int l = 0, r = 0; l < sz; l = r){
while (r < sz && ps[l] == ps[r]) r++;
ans.emplace_back(ps[l], r-l);
}
return ans;
}
std::vector<long long> divisors(long long n){
auto ps = fast_factorize::factorize(n);
int sz = ps.size();
std::vector<long long> ans = {1};
for (int l = 0, r = 0; l < sz; l = r){
while (r < sz && ps[l] == ps[r]) r++;
int e = r - l;
int len = ans.size();
ans.reserve(len*(e+1));
long long mul = ps[l];
while (true){
for (int i = 0; i < len; i++){
ans.emplace_back(ans[i]*mul);
}
if (--e == 0) break;
mul *= ps[l];
}
}
return ans;
}
std::vector<long long> divisors(const std::vector<std::pair<long long, int>> &pes){
std::vector<long long> ans = {1};
for (auto [p, e] : pes){
int len = ans.size();
ans.reserve(len*(e+1));
long long mul = p;
while (true){
for (int i = 0; i < len; i++){
ans.emplace_back(ans[i]*mul);
}
if (--e == 0) break;
mul *= p;
}
}
return ans;
}
} // namespace noya2
#line 7 "math/prime_64bit.hpp"
namespace noya2::internal64bit {
template<typename T>
constexpr T safe_mod(T a, T p){
a %= p;
if constexpr (std::is_signed_v<T> || std::is_same_v<T, __int128_t>){
if (a < 0) a += p;
}
return a;
}
template<typename T, typename U>
constexpr T pow_mod_constexpr(T x, U n, T p){
if (p == 1) return 0;
x = safe_mod(x, p);
T ret = 1;
while (n != 0){
if (n % 2 == 1){
ret = U(ret) * x % p;
}
x = U(x) * x % p;
n /= 2;
}
return ret;
}
// return {g, y}
// g = gcd(x, p), y * x == 1 (mod p/g)
template<typename T>
constexpr std::pair<T, T> inv_gcd(T x, T p){
x = safe_mod(x, p);
if (x == 0) return {p, 0};
T s = p, t = x;
T m0 = 0, m1 = 1;
while (t != 0){
T q = s / t;
s -= t * q;
m0 -= m1 * q;
std::swap(s, t);
std::swap(m0, m1);
}
if (m0 < 0) m0 += p / s;
return {s, m0};
}
// p must be prime
long long primitive_root_ll(long long p){
if (p == 2) return 1;
auto fs = fast_factorize::factorize(p - 1);
fs.erase(std::unique(fs.begin(), fs.end()), fs.end());
for (long long g = 2; ; g++){
bool ok = true;
for (auto &f : fs){
if (pow_mod_constexpr<long long, __int128_t>(g, (p - 1) / f, p) == 1){
ok = false;
break;
}
}
if (ok) return g;
}
exit(1);
}
} // namespace noya2