This documentation is automatically generated by online-judge-tools/verification-helper
#include "misc/O1onTree.hpp"
#pragma once
#include <vector>
#include <queue>
#include <cassert>
#include <bit>
#include <concepts>
namespace noya2 {
// root is vertex 0, par[i] < i
// bool comp(int u, int v), comp(u, v) ? [u, ...] < [v, ...] : [u, ...] >= [v, ...]
// void merge(int u, int v), [p, ...] ++ [v, ...] -- merge(p, v) --> [p, ......]
template<bool get_order = true>
std::conditional_t<get_order, std::vector<int>, void> O1onTree(int n, const std::vector<int> &par, auto comp, auto merge){
if (n == 1){
if constexpr (get_order){
return {0};
}
else {
return ;
}
}
assert(ssize(par) == n);
for (int i = 0; i < n; i++){
assert(par[i] < i);
}
// dsu without weighted union heuristic
std::vector<int> uf(n, -1);
// leader is the highest vertex among the connected component
auto leader = [&](int a){
auto dfs = [&](auto sfs, int v){
if (uf[v] < 0) return v;
return uf[v] = sfs(sfs,uf[v]);
};
return dfs(dfs,a);
};
// updatable priority_queue using segtree
int sz = std::bit_ceil<uint32_t>(n);
std::vector<int> seg(sz);
std::vector<bool> done(sz, true);
auto op = [&](int a, int b){
if (done[b]) return a;
if (done[a]) return b;
return comp(a, b) ? a : b;
};
// definition of op is updated
auto update = [&](int i){
i += sz;
i >>= 1;
// segtree leaf i always contains i
seg[i] = op(i * 2 - sz, i * 2 + 1 - sz);
while (i > 1){
i >>= 1;
seg[i] = op(seg[i * 2], seg[i * 2 + 1]);
}
};
for (int i = 1; i < n; i++){
done[i] = false;
}
for (int i = sz - 1; i >= sz / 2; i--){
seg[i] = op(i * 2 - sz, i * 2 + 1 - sz);
}
for (int i = sz / 2 - 1; i >= 1; i--){
seg[i] = op(seg[i * 2], seg[i * 2 + 1]);
}
std::vector<int> poped_time(n);
poped_time[0] = 0;
for (int i = 1; i < n; i++){
int c = seg[1];
int p = leader(par[c]);
done[c] = true;
merge(p, c);
uf[c] = p;
update(c);
update(p);
poped_time[c] = i;
}
if constexpr (!get_order){
return ;
}
// topological sort of vertex by comparison of poped_time
std::vector<std::vector<int>> childs(n);
for (int v = 1; v < n; v++){
childs[par[v]].emplace_back(v);
}
std::priority_queue<long long, std::vector<long long>, std::greater<long long>> tvs;
auto val = [&](int v) -> long long {
return ((long long)(poped_time[v]) << 32) | v;
};
tvs.push(0);
std::vector<int> order; order.reserve(n);
const long long mask = (1LL << 32) - 1;
while (!tvs.empty()){
int v = tvs.top() & mask; tvs.pop();
order.emplace_back(v);
for (int c : childs[v]){
tvs.push(val(c));
}
}
if constexpr (get_order){
return order;
}
}
// root is vertex 0, par[i] < i
template<typename T, bool get_order = true>
requires requires (T x, T y){
x < y;
{T::op(x, y)} -> std::same_as<T>;
}
std::conditional_t<get_order, std::vector<int>, T> O1onTree(int n, const std::vector<int> &par, std::vector<T> a){
assert(ssize(par) == n);
for (int i = 0; i < n; i++){
assert(par[i] < i);
}
std::vector<int> uf(n, -1);
auto leader = [&](int aa){
auto dfs = [&](auto sfs, int v){
if (uf[v] < 0) return v;
return uf[v] = sfs(sfs,uf[v]);
};
return dfs(dfs,aa);
};
using dat = std::pair<T, long long>;
std::priority_queue<dat> pque;
for (int i = 1; i < n; i++){
pque.push({a[i], i});
}
const long long mask = (1LL << 32) - 1;
const int time_max = (1 << 30);
std::vector<int> latest(n,0);
std::vector<int> poped_time(n);
poped_time[0] = 0;
int idx = 1;
while (!pque.empty()){
auto [xc, tc] = pque.top(); pque.pop();
if (latest[tc & mask] > (tc >> 32)) continue;
int c = (tc & mask);
latest[c] = time_max;
int p = leader(par[c]);
uf[c] = p;
a[p] = T::op(a[p], xc);
if (p != 0){
latest[p]++;
pque.push({a[p], ((long long)(latest[p]) << 32) | p});
}
poped_time[c] = idx++;
}
if constexpr (!get_order){
return a[0];
}
std::vector<std::vector<int>> childs(n);
for (int v = 1; v < n; v++){
childs[par[v]].emplace_back(v);
}
std::priority_queue<long long, std::vector<long long>, std::greater<long long>> tvs;
auto val = [&](int v) -> long long {
return ((long long)(poped_time[v]) << 32) | v;
};
tvs.push(0);
std::vector<int> order; order.reserve(n);
while (!tvs.empty()){
int v = tvs.top() & mask; tvs.pop();
order.emplace_back(v);
for (int c : childs[v]){
tvs.push(val(c));
}
}
if constexpr (get_order){
return order;
}
}
} // namespace noya2
#line 2 "misc/O1onTree.hpp"
#include <vector>
#include <queue>
#include <cassert>
#include <bit>
#include <concepts>
namespace noya2 {
// root is vertex 0, par[i] < i
// bool comp(int u, int v), comp(u, v) ? [u, ...] < [v, ...] : [u, ...] >= [v, ...]
// void merge(int u, int v), [p, ...] ++ [v, ...] -- merge(p, v) --> [p, ......]
template<bool get_order = true>
std::conditional_t<get_order, std::vector<int>, void> O1onTree(int n, const std::vector<int> &par, auto comp, auto merge){
if (n == 1){
if constexpr (get_order){
return {0};
}
else {
return ;
}
}
assert(ssize(par) == n);
for (int i = 0; i < n; i++){
assert(par[i] < i);
}
// dsu without weighted union heuristic
std::vector<int> uf(n, -1);
// leader is the highest vertex among the connected component
auto leader = [&](int a){
auto dfs = [&](auto sfs, int v){
if (uf[v] < 0) return v;
return uf[v] = sfs(sfs,uf[v]);
};
return dfs(dfs,a);
};
// updatable priority_queue using segtree
int sz = std::bit_ceil<uint32_t>(n);
std::vector<int> seg(sz);
std::vector<bool> done(sz, true);
auto op = [&](int a, int b){
if (done[b]) return a;
if (done[a]) return b;
return comp(a, b) ? a : b;
};
// definition of op is updated
auto update = [&](int i){
i += sz;
i >>= 1;
// segtree leaf i always contains i
seg[i] = op(i * 2 - sz, i * 2 + 1 - sz);
while (i > 1){
i >>= 1;
seg[i] = op(seg[i * 2], seg[i * 2 + 1]);
}
};
for (int i = 1; i < n; i++){
done[i] = false;
}
for (int i = sz - 1; i >= sz / 2; i--){
seg[i] = op(i * 2 - sz, i * 2 + 1 - sz);
}
for (int i = sz / 2 - 1; i >= 1; i--){
seg[i] = op(seg[i * 2], seg[i * 2 + 1]);
}
std::vector<int> poped_time(n);
poped_time[0] = 0;
for (int i = 1; i < n; i++){
int c = seg[1];
int p = leader(par[c]);
done[c] = true;
merge(p, c);
uf[c] = p;
update(c);
update(p);
poped_time[c] = i;
}
if constexpr (!get_order){
return ;
}
// topological sort of vertex by comparison of poped_time
std::vector<std::vector<int>> childs(n);
for (int v = 1; v < n; v++){
childs[par[v]].emplace_back(v);
}
std::priority_queue<long long, std::vector<long long>, std::greater<long long>> tvs;
auto val = [&](int v) -> long long {
return ((long long)(poped_time[v]) << 32) | v;
};
tvs.push(0);
std::vector<int> order; order.reserve(n);
const long long mask = (1LL << 32) - 1;
while (!tvs.empty()){
int v = tvs.top() & mask; tvs.pop();
order.emplace_back(v);
for (int c : childs[v]){
tvs.push(val(c));
}
}
if constexpr (get_order){
return order;
}
}
// root is vertex 0, par[i] < i
template<typename T, bool get_order = true>
requires requires (T x, T y){
x < y;
{T::op(x, y)} -> std::same_as<T>;
}
std::conditional_t<get_order, std::vector<int>, T> O1onTree(int n, const std::vector<int> &par, std::vector<T> a){
assert(ssize(par) == n);
for (int i = 0; i < n; i++){
assert(par[i] < i);
}
std::vector<int> uf(n, -1);
auto leader = [&](int aa){
auto dfs = [&](auto sfs, int v){
if (uf[v] < 0) return v;
return uf[v] = sfs(sfs,uf[v]);
};
return dfs(dfs,aa);
};
using dat = std::pair<T, long long>;
std::priority_queue<dat> pque;
for (int i = 1; i < n; i++){
pque.push({a[i], i});
}
const long long mask = (1LL << 32) - 1;
const int time_max = (1 << 30);
std::vector<int> latest(n,0);
std::vector<int> poped_time(n);
poped_time[0] = 0;
int idx = 1;
while (!pque.empty()){
auto [xc, tc] = pque.top(); pque.pop();
if (latest[tc & mask] > (tc >> 32)) continue;
int c = (tc & mask);
latest[c] = time_max;
int p = leader(par[c]);
uf[c] = p;
a[p] = T::op(a[p], xc);
if (p != 0){
latest[p]++;
pque.push({a[p], ((long long)(latest[p]) << 32) | p});
}
poped_time[c] = idx++;
}
if constexpr (!get_order){
return a[0];
}
std::vector<std::vector<int>> childs(n);
for (int v = 1; v < n; v++){
childs[par[v]].emplace_back(v);
}
std::priority_queue<long long, std::vector<long long>, std::greater<long long>> tvs;
auto val = [&](int v) -> long long {
return ((long long)(poped_time[v]) << 32) | v;
};
tvs.push(0);
std::vector<int> order; order.reserve(n);
while (!tvs.empty()){
int v = tvs.top() & mask; tvs.pop();
order.emplace_back(v);
for (int c : childs[v]){
tvs.push(val(c));
}
}
if constexpr (get_order){
return order;
}
}
} // namespace noya2