This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/lcm_convolution.hpp"
#pragma once
#include"../math/sieve.hpp"
namespace noya2 {
template <typename T>
vector<T> divisor_zeta_transform(const vector<T> &f){
int n = f.size() - 1;
sieve.request(n);
auto F = f;
for (const auto &p : sieve.primes){
if (n < p) break;
for (int i = 1; i * p <= n; i++) F[i * p] += F[i];
}
return F;
}
template <typename T>
vector<T> divisor_mobius_transform(const vector<T> &F){
int n = F.size() - 1;
sieve.request(n);
auto f = F;
for (const auto &p : sieve.primes){
if (n < p) break;
for (int i = n / p; i >= 1; i--) f[i * p] -= f[i];
}
return f;
}
template <typename T>
vector<T> lcm_convolution(const vector<T> &a, const vector<T> &b){
assert(a.size() == b.size());
int n = a.size();
auto ra = divisor_zeta_transform(a);
auto rb = divisor_zeta_transform(b);
for (int i = 0; i < n; i++) ra[i] *= rb[i];
return divisor_mobius_transform(ra);
}
} // namespace noya2
#line 2 "math/lcm_convolution.hpp"
#line 2 "math/sieve.hpp"
#line 2 "template/template.hpp"
using namespace std;
#include<bits/stdc++.h>
#line 1 "template/inout_old.hpp"
namespace noya2 {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p){
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p){
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v){
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v){
for (auto &x : v) is >> x;
return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u){
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u){
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
template<typename T>
void out(const vector<vector<T>> &vv){
int s = (int)vv.size();
for (int i = 0; i < s; i++) out(vv[i]);
}
struct IoSetup {
IoSetup(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetup_noya2;
} // namespace noya2
#line 1 "template/const.hpp"
namespace noya2{
const int iinf = 1'000'000'007;
const long long linf = 2'000'000'000'000'000'000LL;
const long long mod998 = 998244353;
const long long mod107 = 1000000007;
const long double pi = 3.14159265358979323;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";
void yes(){ cout << "Yes\n"; }
void no(){ cout << "No\n"; }
void YES(){ cout << "YES\n"; }
void NO(){ cout << "NO\n"; }
void yn(bool t){ t ? yes() : no(); }
void YN(bool t){ t ? YES() : NO(); }
} // namespace noya2
#line 2 "template/utils.hpp"
#line 6 "template/utils.hpp"
namespace noya2{
unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){
if (a == 0 || b == 0) return a + b;
int n = __builtin_ctzll(a); a >>= n;
int m = __builtin_ctzll(b); b >>= m;
while (a != b) {
int mm = __builtin_ctzll(a - b);
bool f = a > b;
unsigned long long c = f ? a : b;
b = f ? b : a;
a = (c - b) >> mm;
}
return a << std::min(n, m);
}
template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }
long long sqrt_fast(long long n) {
if (n <= 0) return 0;
long long x = sqrt(n);
while ((x + 1) * (x + 1) <= n) x++;
while (x * x > n) x--;
return x;
}
template<typename T> T floor_div(const T n, const T d) {
assert(d != 0);
return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);
}
template<typename T> T ceil_div(const T n, const T d) {
assert(d != 0);
return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);
}
template<typename T> void uniq(std::vector<T> &v){
std::sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
}
template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }
template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }
template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }
} // namespace noya2
#line 8 "template/template.hpp"
#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)
#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)
#define all(v) (v).begin(),(v).end()
using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;
namespace noya2{
/* ~ (. _________ . /) */
}
using namespace noya2;
#line 4 "math/sieve.hpp"
namespace noya2{
struct Sieve {
vector<int> primes, factor, mu;
Sieve (int N = 1024){
build(N);
}
void request(int N){
int len = n_max();
if (len >= N) return ;
while (len < N) len <<= 1;
build(len);
}
int n_max(){ return factor.size()-1; }
private:
void build (int N){
primes.clear();
factor.resize(N+1); fill(factor.begin(),factor.end(),0);
mu.resize(N+1); fill(mu.begin(),mu.end(),1);
for(int n = 2; n <= N; n++) {
if (factor[n] == 0){
primes.push_back(n);
factor[n] = n;
mu[n] = -1;
}
for (int p : primes){
if(n * p > N || p > factor[n]) break;
factor[n * p] = p;
mu[n * p] = p == factor[n] ? 0 : -mu[n];
}
}
}
} sieve;
int mobius_sieve(int n){
assert(1 <= n && n <= sieve.n_max());
return sieve.mu[n];
}
bool is_prime_sieve(int n){
if (n <= 2) return n == 2;
assert(n <= sieve.n_max());
return sieve.factor[n] == n;
}
vector<pair<int,int>> prime_factorization_sieve(int n){
assert(1 <= n && n <= sieve.n_max());
vector<int> facts;
while (n > 1){
int p = sieve.factor[n];
facts.push_back(p);
n /= p;
}
vector<pair<int,int>> pes;
int siz = facts.size();
for (int l = 0, r = 0; l < siz; l = r){
while (r < siz && facts[r] == facts[l]) r++;
pes.emplace_back(facts[l],r-l);
}
return pes;
}
vector<int> divisor_enumeration_sieve(int n){
auto pes = prime_factorization_sieve(n);
vector<int> divs = {1};
for (auto [p, e] : pes){
vector<int> nxt; nxt.reserve(divs.size() * (e+1));
for (auto x : divs){
for (int tt = 0; tt <= e; tt++){
nxt.push_back(x);
x *= p;
}
}
swap(divs,nxt);
}
return divs;
}
} // namespace noya2
#line 4 "math/lcm_convolution.hpp"
namespace noya2 {
template <typename T>
vector<T> divisor_zeta_transform(const vector<T> &f){
int n = f.size() - 1;
sieve.request(n);
auto F = f;
for (const auto &p : sieve.primes){
if (n < p) break;
for (int i = 1; i * p <= n; i++) F[i * p] += F[i];
}
return F;
}
template <typename T>
vector<T> divisor_mobius_transform(const vector<T> &F){
int n = F.size() - 1;
sieve.request(n);
auto f = F;
for (const auto &p : sieve.primes){
if (n < p) break;
for (int i = n / p; i >= 1; i--) f[i * p] -= f[i];
}
return f;
}
template <typename T>
vector<T> lcm_convolution(const vector<T> &a, const vector<T> &b){
assert(a.size() == b.size());
int n = a.size();
auto ra = divisor_zeta_transform(a);
auto rb = divisor_zeta_transform(b);
for (int i = 0; i < n; i++) ra[i] *= rb[i];
return divisor_mobius_transform(ra);
}
} // namespace noya2