This documentation is automatically generated by online-judge-tools/verification-helper
#include "math/euler_circuit_counting.hpp"
#pragma once
#include"../math/spanning_tree_counting.hpp"
#include"../math/binomial.hpp"
namespace noya2 {
// BEST theorem
// https://en.wikipedia.org/wiki/BEST_theorem
template<typename T>
T euler_circuit_counting(int n, const std::vector<std::tuple<int, int, long long>> &es){
// i_deg == o_deg
std::vector<long long> deg(n,0);
for (auto [u, v, c] : es){
deg[u] -= c;
deg[v] += c;
}
for (int i = 0; i < n; i++) if (deg[i] != 0) return T(0);
// edges are connected
int m = es.size();
std::vector<bool> vis(n,false);
std::vector<std::vector<int>> g(n);
for (auto [u, v, c] : es){
if (c == 0) continue;
g[u].emplace_back(v);
g[v].emplace_back(u);
}
for (int s = 0; s < n; s++){
if (g[s].empty()) continue;
std::queue<int> que;
que.push(s);
vis[s] = true;
while (!que.empty()){
int v = que.front(); que.pop();
for (int u : g[v]){
if (!vis[u]){
vis[u] = true;
que.push(u);
}
}
}
break;
}
for (auto [u, v, c] : es){
if (!vis[u]) return T(0);
}
// directed spanning tree counting
std::vector<int> ids(n);
int nonzero = 0;
for (int v = 0; v < n; v++){
if (!g[v].empty()){
ids[v] = nonzero++;
}
}
std::vector<std::tuple<int, int, T>> nes(m);
for (int i = 0; i < m; i++){
auto [u, v, c] = es[i];
nes[i] = {ids[u],ids[v],c};
deg[v] += c;
}
binomial<T> bnm;
T ans = directed_spanning_tree_counting(nonzero,nes);
for (int i = 0; i < n; i++){
if (deg[i] > 0){
ans *= bnm.fact(deg[i]-1);
}
}
return ans;
}
} // namespace noya2
#line 2 "math/euler_circuit_counting.hpp"
#line 2 "math/spanning_tree_counting.hpp"
#line 2 "math/matrix.hpp"
#include <vector>
#include <array>
#include <iostream>
#include <ranges>
#include <cassert>
namespace noya2 {
template<typename T, size_t hw = -1uz>
struct matrix {
static constexpr int h = hw, w = hw;
std::array<T, hw*hw> m;
matrix () : m({}) {}
matrix (const std::array<T, hw*hw> &_m) : m(_m) {}
matrix (const std::array<std::array<T, hw>, hw> &_m){
for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){
m[idx(i,j)] = _m[i][j];
}
}
matrix (const std::vector<std::vector<T>> &_m){
for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){
m[idx(i,j)] = _m[i][j];
}
}
auto operator[](int i) const {
return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w);
}
auto operator[](int i){
return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w);
}
matrix &operator+= (const matrix &r){
for (int i = 0; i < h; ++i){
for (int j = 0; j < w; ++j){
m[idx(i,j)] += r.m[idx(i,j)];
}
}
return *this;
}
matrix &operator-= (const matrix &r){
for (int i = 0; i < h; ++i){
for (int j = 0; j < w; ++j){
m[idx(i,j)] -= r.m[idx(i,j)];
}
}
return *this;
}
matrix &operator*= (const matrix &r){
matrix ret;
for (int i = 0; i < h; i++){
for (int k = 0; k < w; k++){
for (int j = 0; j < r.w; j++){
ret.m[idx(i,j)] += m[idx(i,k)] * r.m[idx(k,j)];
}
}
}
return *this = ret;
}
matrix operator+ (const matrix &r) const { return matrix(*this) += r; }
matrix operator- (const matrix &r) const { return matrix(*this) -= r; }
matrix operator* (const matrix &r) const { return matrix(*this) *= r; }
matrix& operator*=(const T &r){
for (int i = 0; i < h; ++i){
for (int j = 0; j < w; ++j){
m[idx(i,j)] *= r;
}
}
return *this;
}
friend matrix operator* (const T &r, const matrix &mat){
return matrix(mat) *= r;
}
friend matrix operator* (const matrix &mat, const T &r){
return matrix(mat) *= r;
}
matrix pow(long long n){
if (n == 0) return e();
matrix f = pow(n / 2);
matrix ret = f * f;
if (n & 1) ret *= (*this);
return ret;
}
int idx(int i, int j){
return i * w + j;
}
static matrix e(){
matrix ret;
for (int i = 0; i < h; i++){
ret[i][i] = T(1);
}
return ret;
}
friend std::ostream &operator<<(std::ostream &os, const matrix &mat){
for (int i = 0; i < mat.h; i++){
if (i != 0) os << '\n';
for (int j = 0; j < mat.w; j++){
if (j != 0) os << ' ';
os << mat[i][j];
}
}
return os;
}
friend std::istream &operator>>(std::istream &is, matrix &mat){
for (int i = 0; i < mat.h; i++){
for (int j = 0; j < mat.w; j++){
is >> mat[i][j];
}
}
return is;
}
friend bool operator==(const matrix &a, const matrix &b){
for (int i = 0; i < a.h; i++){
for (int j = 0; j < a.w; j++){
if (a[i][j] != b[i][j]){
return false;
}
}
}
return true;
}
};
template<typename T>
struct matrix<T,-1uz> {
int h, w;
std::vector<T> m;
matrix () {}
matrix (int _h) : matrix(_h,_h) {}
matrix (int _h, int _w) : h(_h), w(_w), m(_h*_w) {}
matrix (int _h, int _w, const std::vector<T> &_m) : h(_h), w(_w), m(_m) {
assert((int)_m.size() == _h*_w);
}
matrix (const std::vector<std::vector<T>> &_m){
h = _m.size();
assert(h >= 1);
w = _m[0].size();
for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){
m[idx(i,j)] = _m[i][j];
}
}
auto operator[](int i) const {
return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w);
}
auto operator[](int i){
return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w);
}
matrix &operator+= (const matrix &r){
for (int i = 0; i < h; ++i){
for (int j = 0; j < w; ++j){
m[idx(i,j)] += r.m[idx(i,j)];
}
}
return *this;
}
matrix &operator-= (const matrix &r){
for (int i = 0; i < h; ++i){
for (int j = 0; j < w; ++j){
m[idx(i,j)] -= r.m[idx(i,j)];
}
}
return *this;
}
matrix &operator*= (const matrix &r){
matrix ret(h, r.w);
for (int i = 0; i < h; i++){
for (int k = 0; k < w; k++){
for (int j = 0; j < r.w; j++){
ret.m[idx(i,j)] += m[idx(i,k)] * r.m[idx(k,j)];
}
}
}
return *this = ret;
}
matrix operator+ (const matrix &r) const { return matrix(*this) += r; }
matrix operator- (const matrix &r) const { return matrix(*this) -= r; }
matrix operator* (const matrix &r) const { return matrix(*this) *= r; }
matrix& operator*=(const T &r){
for (int i = 0; i < h; ++i){
for (int j = 0; j < w; ++j){
m[idx(i,j)] *= r;
}
}
return *this;
}
friend matrix operator* (const T &r, const matrix &mat){
return matrix(mat) *= r;
}
friend matrix operator* (const matrix &mat, const T &r){
return matrix(mat) *= r;
}
matrix pow(long long n){
if (n == 0) return e(h);
matrix f = pow(n / 2);
matrix ret = f * f;
if (n & 1) ret *= (*this);
return ret;
}
int idx(int i, int j){
return i * w + j;
}
static matrix e(int _h){
auto ret = matrix(_h, _h);
for (int i = 0; i < _h; i++){
ret[i][i] = T(1);
}
return ret;
}
friend std::ostream &operator<<(std::ostream &os, const matrix &mat){
for (int i = 0; i < mat.h; i++){
if (i != 0) os << '\n';
for (int j = 0; j < mat.w; j++){
if (j != 0) os << ' ';
os << mat[i][j];
}
}
return os;
}
friend std::istream &operator>>(std::istream &is, matrix &mat){
for (int i = 0; i < mat.h; i++){
for (int j = 0; j < mat.w; j++){
is >> mat[i][j];
}
}
return is;
}
};
template<typename T, size_t _hw = -1uz>
T determinant(matrix<T, _hw> mat){
int hw = mat.h;
T ret = 1;
for (int i = 0; i < hw; i++) {
int idx = -1;
for (int j = i; j < hw; j++) {
if (mat[j][i] != 0) {
idx = j;
break;
}
}
if (idx == -1) return 0;
if (i != idx) {
ret *= T(-1);
for (int j = 0; j < hw; j++){
std::swap(mat[i][j],mat[idx][j]);
}
}
ret *= mat[i][i];
T inv = T(1) / mat[i][i];
for (int j = 0; j < hw; j++) {
mat[i][j] *= inv;
}
for (int j = i + 1; j < hw; j++) {
T a = mat[j][i];
if (a == 0) continue;
for (int k = i; k < hw; k++) {
mat[j][k] -= mat[i][k] * a;
}
}
}
return ret;
}
} // namespace noya2
#line 4 "math/spanning_tree_counting.hpp"
namespace noya2 {
template<typename T>
T directed_spanning_tree_counting(int n, const std::vector<std::tuple<int,int,T>> &es){
matrix<T> mat(n-1,n-1);
for (auto [u, v, c] : es){
if (u < n-1 && v < n-1){
mat[u][v] -= c;
}
if (v < n-1){
mat[v][v] += c;
}
}
return determinant(mat);
}
template<typename T>
T undirected_spanning_tree_counting(int n, const std::vector<std::tuple<int,int,T>> &es){
matrix<T> mat(n-1,n-1);
for (auto [u, v, c] : es){
if (u < n-1 && v < n-1){
mat[u][v] -= c;
mat[v][u] -= c;
}
if (v < n-1){
mat[v][v] += c;
}
if (u < n-1){
mat[u][u] += c;
}
}
return determinant(mat);
}
} // namespace noya2
#line 2 "math/binomial.hpp"
#line 4 "math/binomial.hpp"
namespace noya2 {
template<typename mint>
struct binomial {
binomial(int len = 300000){ extend(len); }
static mint fact(int n){
if (n < 0) return 0;
while (n >= (int)_fact.size()) extend();
return _fact[n];
}
static mint ifact(int n){
if (n < 0) return 0;
while (n >= (int)_fact.size()) extend();
return _ifact[n];
}
static mint inv(int n){
return ifact(n) * fact(n-1);
}
static mint C(int n, int r){
if (!(0 <= r && r <= n)) return 0;
return fact(n) * ifact(r) * ifact(n-r);
}
static mint P(int n, int r){
if (!(0 <= r && r <= n)) return 0;
return fact(n) * ifact(n-r);
}
static mint catalan(int n){
return C(n * 2, n) * inv(n + 1);
}
inline mint operator()(int n, int r) { return C(n, r); }
template<class... Cnts>
static mint M(const Cnts&... cnts){
return multinomial(0,1,cnts...);
}
static void initialize(int len = 2){
_fact.clear();
_ifact.clear();
extend(len);
}
private:
static mint multinomial(const int& sum, const mint& div_prod){
if (sum < 0) return 0;
return fact(sum) * div_prod;
}
template<class... Tail>
static mint multinomial(const int& sum, const mint& div_prod, const int& n1, const Tail&... tail){
if (n1 < 0) return 0;
return multinomial(sum+n1,div_prod*ifact(n1),tail...);
}
static inline std::vector<mint> _fact, _ifact;
static void extend(int len = -1){
if (_fact.empty()){
_fact = _ifact = {1,1};
}
int siz = _fact.size();
if (len == -1) len = siz * 2;
len = (int)min<long long>(len, mint::mod() - 1);
if (len < siz) return ;
_fact.resize(len+1), _ifact.resize(len+1);
for (int i = siz; i <= len; i++) _fact[i] = _fact[i-1] * i;
_ifact[len] = _fact[len].inv();
for (int i = len; i > siz; i--) _ifact[i-1] = _ifact[i] * i;
}
};
} // namespace noya2
#line 5 "math/euler_circuit_counting.hpp"
namespace noya2 {
// BEST theorem
// https://en.wikipedia.org/wiki/BEST_theorem
template<typename T>
T euler_circuit_counting(int n, const std::vector<std::tuple<int, int, long long>> &es){
// i_deg == o_deg
std::vector<long long> deg(n,0);
for (auto [u, v, c] : es){
deg[u] -= c;
deg[v] += c;
}
for (int i = 0; i < n; i++) if (deg[i] != 0) return T(0);
// edges are connected
int m = es.size();
std::vector<bool> vis(n,false);
std::vector<std::vector<int>> g(n);
for (auto [u, v, c] : es){
if (c == 0) continue;
g[u].emplace_back(v);
g[v].emplace_back(u);
}
for (int s = 0; s < n; s++){
if (g[s].empty()) continue;
std::queue<int> que;
que.push(s);
vis[s] = true;
while (!que.empty()){
int v = que.front(); que.pop();
for (int u : g[v]){
if (!vis[u]){
vis[u] = true;
que.push(u);
}
}
}
break;
}
for (auto [u, v, c] : es){
if (!vis[u]) return T(0);
}
// directed spanning tree counting
std::vector<int> ids(n);
int nonzero = 0;
for (int v = 0; v < n; v++){
if (!g[v].empty()){
ids[v] = nonzero++;
}
}
std::vector<std::tuple<int, int, T>> nes(m);
for (int i = 0; i < m; i++){
auto [u, v, c] = es[i];
nes[i] = {ids[u],ids[v],c};
deg[v] += c;
}
binomial<T> bnm;
T ans = directed_spanning_tree_counting(nonzero,nes);
for (int i = 0; i < n; i++){
if (deg[i] > 0){
ans *= bnm.fact(deg[i]-1);
}
}
return ans;
}
} // namespace noya2